Insect Wing Classification of Mosquitoes and Bees Using CO1 Image Recognition
نویسندگان
چکیده
The certainty that a species is accurately identified is the cornerstone of appearance based classification; however the methods used in classical taxonomy have yet to fully catch up with the digital age. Recognising this, the CO1 algorithm presented on the StripeSpotter platform was used to identify different species and sexes of mosquito wings (Diptera: Culicidae) and honey bee and bumblebee wings (Hymenoptera: Apidae). Images of different species of mosquito and bee wings were uploaded onto the CO1 database and test wing images were analysed to determine . CC-BY-NC-ND 4.0 International license not peer-reviewed) is the author/funder. It is made available under a The copyright holder for this preprint (which was . http://dx.doi.org/10.1101/034819 doi: bioRxiv preprint first posted online Dec. 18, 2015;
منابع مشابه
I3S Classic and Insect Species Identification of Diptera and Hymenoptera (Mosquitoes and Bees)
A number of image recognition systems have been specifically formulated for the individual recognition of large animals. These programs are versatile and can easily be adapted for the identification of smaller individuals such as insects. The Interactive Individual Identification System, I3S Classic, initially produced for the identification of individual whale sharks was employed to distinguis...
متن کاملClassification of emotional speech using spectral pattern features
Speech Emotion Recognition (SER) is a new and challenging research area with a wide range of applications in man-machine interactions. The aim of a SER system is to recognize human emotion by analyzing the acoustics of speech sound. In this study, we propose Spectral Pattern features (SPs) and Harmonic Energy features (HEs) for emotion recognition. These features extracted from the spectrogram ...
متن کاملOn the use of Textural Features and Neural Networks for Leaf Recognition
for recognizing various types of plants, so automatic image recognition algorithms can extract to classify plant species and apply these features. Fast and accurate recognition of plants can have a significant impact on biodiversity management and increasing the effectiveness of the studies in this regard. These automatic methods have involved the development of recognition techniques and digi...
متن کاملFace Recognition using an Affine Sparse Coding approach
Sparse coding is an unsupervised method which learns a set of over-complete bases to represent data such as image and video. Sparse coding has increasing attraction for image classification applications in recent years. But in the cases where we have some similar images from different classes, such as face recognition applications, different images may be classified into the same class, and hen...
متن کاملDetection and Classification of Breast Cancer in Mammography Images Using Pattern Recognition Methods
Introduction: In this paper, a method is presented to classify the breast cancer masses according to new geometric features. Methods: After obtaining digital breast mammogram images from the digital database for screening mammography (DDSM), image preprocessing was performed. Then, by using image processing methods, an algorithm was developed for automatic extracting of masses from other norma...
متن کامل